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Design of dispersive mirrors for ultrafast applications
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Different approaches to the design of dispersive mirrors (DMs) for ultrafast applications are considered.
High efficiency and good quality of solutions are achieved due to a completely analytical approach to
the computations of all DM characteristics and a modern version of the needle optimization technique.
Different means to suppress group delay dispersion (GDD) oscillations are demonstrated. Alternatively,
design approaches not based on GDD optimization are described, including time-domain design approaches
based on direct optimization of pulse energy concentration.
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Since the invention of chirped mirrors[1], compressors
based on multilayer mirrors have become more and more
popular. Chirped mirrors rely on a multilayer structure
with a gradual change in the optical thickness across the
structure, resulting in a wavelength-dependent penetra-
tion depth of incident radiation[1]. Alternatively, group
delay variation may be introduced with resonant struc-
tures, implying a wavelength-dependent storage time of
incident radiation[2]. In dispersive mirrors (DMs) both
effects can coexist, thereby further improving the per-
formance.

In this letter, we consider several possible approaches
that will allow one to solve very demanding design prob-
lems. All approaches are based on a very efficient nee-
dle optimization technique. Firstly, several important
aspects of the direct problem solution are considered.
They include a completely analytical approach to the
computation of all DM spectral characteristics and ques-
tions connected with the proper presentation of material
dispersive properties. Secondly, we consider a design ap-
proach based on the minimization of the merit function,
including reflectance and group delay dispersion (GDD).
Since this is one of the most popular and widely used
approaches, we call it a “classical” approach. Thirdly,
we consider a modification of this approach based on the
reduction of GDD to phase targets. A special technique
permits automatic exclusion of two integration constants
from the merit function. Then, we briefly describe the
complementary DM pair approach and the double-angle
approach, respectively, which are two powerful methods
for GDD oscillation suppression. Finally, we consider
an alternative approach in the optimization of a special
merit function in the time domain. This merit function
includes requirements for concentration of pulse energy
at some point and maximization of total output pulse
energy.

Before considering design problems, it is necessary to
define the main spectral characteristics of DMs and in-
troduce a model connecting the optical parameters of a
multilayer with its spectral characteristics. Along with
reflectance R, DMs are characterized by group delay
(GD) and GDD, which are the first and second deriva-
tives of phase on reflection ϕ with respect to the circular
frequency ω = 2πc/λ, where c is the speed of light and λ

is the wavelength:

GD = −dϕ

dω
, GDD = −d2ϕ

dω2
. (1)

The model of a multilayer system can be obtained
directly from Maxwell’s equations and methods of calcu-
lations of R and ϕ are well known (see, for example Ref.
[3], pp. 2–26). As a result, for multilayers with piece-wise
constant refractive index profiles, one can obtain a set of
recurrent formulae, including Abelès matrix method[4].
The normal incidence case is considered only in order to
make the equations more compact; a generalization on
the case of oblique incidence and arbitrary polarization
is quite straightforward. Let N be the number of layers,
and uj , vj (j = 0, . . . , N) be the values proportional to
tangential amplitudes of electric and magnetic fields at
layer boundaries, respectively. The boundary between
the multilayer and the substrate corresponds to j = 0
and the boundary between the multilayer and incident
medium corresponds to j = N . The matrix method can
be written in the form(

uj

vj

)
= Mj

(
uj−1

vj−1

)
, Mj=

(
cos φj (i/n) sin φj

in sinφj cos φj

)
,

j = 1, . . . N ;
(

u0

v0

)
=

(
1
ns

)
, (2)

where φj = k njdj are the phase thicknesses of layers
with refractive indices nj and physical thicknesses dj , k
= 2π/λ is the wave number, and ns is the substrate re-
fractive index.

Amplitude reflectance r, energy reflectance R, and
phase on reflectance ϕ are expressed through uN and
vN :

r =
nauN − vN

nauN + vN
, R = |r|2 , ϕ = arg r. (3)

One popular and very simple implementation approach
for computing GD and GDD is based on finite-difference
approximations. For example,

GD ∼= −ϕ(ω + ∆ω/2) − ϕ(ω − ∆ω/2)
∆ω

,

GDD ∼= −ϕ(ω + ∆ω) − 2ϕ(ω) + ϕ(ω − ∆ω)
∆ω2

. (4)
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While the expressions in Eq. (4) have second order of
approximations with respect to the small parameter ∆ω,
they are unable to provide the accuracy required for the
solution of complicated DM design problems. Attempts
to further decrease the value of ∆ω in order to improve
accuracy lead to fast loss of stability, since round-off com-
putational errors start to reveal in the result and make
GD and GDD approximate values very far from the real
ones.

The only alternative is to implement a completely ana-
lytical and exact approach. Below, we demonstrate only
the main idea of this approach. The GD expression can
be rewritten as

GD = −d arg ϕ

dω
= −1

c
Im

d ln r

dk
= −1

c
Im

(
1
r

dr

dk

)
. (5)

We denote the derivatives of u and v with respect to
wavenumber k as u̇ = du/dk and v̇ = dv/dk. From Eq.
(3), it follows that

dr

dk
=

2
(nauN + vN )2

·
(

uv
dna

dk
+ nav u̇N − nauv̇N

)
. (6)

In this expression, na is the refractive index of the in-
cident medium. Values of u̇N and v̇N are determined,
also with the help of a recurrent equation, which can be
obtained from Eq. (2) by parameter k differentiation:(

u̇j

v̇j

)
= Mj

(
u̇j−1

v̇j−1

)
+

dMj

dk

(
uj−1

vj−1

)
,

j = 1, . . . , N,

(
u̇0

v̇0

)
=

(
0

dns/dk

)
. (7)

The derivative of characteristic matrix Mj takes the form

dMj

dk
=

(
− sinφj i/nj cos φj

inj cos φj − sinφj

)
dφj

dk

+
(

0 −i/n2
j sinφj

i sinφj 0

)
dnj

dk
. (8)

Equations (2)–(8) describe analytically exact algo-
rithms for the computation of the GD values. By apply-
ing one more derivative with respect to k, it is easy to
obtain an analytically exact algorithm for the GDD com-
putation. The central part of this algorithm comprises
recurrent equation for üj = d2uj/dk2 and v̈j = d2vj/dk2,
which also includes the values u̇j and v̇j , determined by
the recurrent Eq. (7), and the values u and v, determined
by the recurrent Eq. (2). The number of arithmetic op-
erations per layer required for the GD and GDD compu-
tations remains constant; thus the described analytical
methods are efficient. An analytic approach to the DM
design based on a slightly different technique was also
reported in Ref. [5], where the authors proposed to use
some approximations in order to simplify and accelerate
computations.

Fig. 1. (a) Refractive indices of Nb2O5 represented by the
Cauchy formula, piece-wise linear interpolation and interpo-
lating cubic spline; (b) the first derivatives of these refractive
index representations are shown at the lower part.

The recurrent Eq. (7) for GD computations includes
the first derivatives of the layer materials and substrate
refractive indices dnj/dk and dns/dk. The correspond-
ing recurrent equation for the GDD computations in-
cludes both the first and second derivatives of these re-
fractive indices. For a presentation of refractive index
dispersion dependencies, lookup tables with successive
piece-wise linear interpolation are used quite often. In
the case of GD and GDD calculation, this approach is
not applicable since the first and especially the second
derivatives of the refractive index are very far from the
expected ones. Figure 1 illustrates the problem of proper
refractive index presentation. At the upper part, the re-
fractive index of Nb2O5 is represented by the Cauchy’s
equation:

n(λ) = n∞ + A/λ2 + B/λ4, (9)

by the piece-wise linear interpolation using five nodes,
and by the spline interpolation[6] built with the same
five nodes. It is seen that all three representations give
a reasonable approximation of the refractive index dis-
persion. With a growing number of nodes, approxima-
tion improves. At the lower part of Fig. 1, the deriva-
tives with respect to λ are represented. The derivative
of piece-wise linear approximation is piece-wise constant
function and this function is not continuous. Interpolat-
ing a spline representation derivative remains continuous,
providing a noticeably better approximation.

The situation worsens even further for the case of the
GDD calculations, which require second derivatives of the
refractive index dispersion. Obviously, the second deriva-
tive of the piece-wise linear interpolation gives a sum of
Dirac’s delta-functions[7], yet the second derivative of the
interpolating spline representation still remains a contin-
uous function.

Therefore, in the problems connected with GD/GDD
calculations and optimization, it is always necessary to
use either analytical expressions for the refractive index
dispersions or interpolating spline if analytical expres-
sions are not available.

One of the most widely used modern approaches to the
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synthesis problems in multilayer optics is based on the
so-called variational formulation. It comprises the intro-
duction of a merit function describing closeness of the
current spectral characteristics to the desired character-
istics and minimization of this merit function with some
combinations of powerful numerical algorithms. In the
case of DM design problems, phase requirements are of-
ten formulated in terms of pulse GDD, which need to be
compensated. Therefore, one of the most widely used
merit functions appears as

F (X) =
1
L

L∑
m=1

[(
R(λm) − R(m)

∆R(m)

)2

+

(
GDD(λm) − GDD(m)

∆GDD(m)

)2
 , (10)

where R(λm) and GDD(λm) are theoretical reflectances
and GDD values corresponding to the current de-
sign, R(m) and GDD(m) are target values, ∆R(m) and
∆GDD(m) are tolerances, λm (m = 1, . . . , L) is the
wavelength grid, and X = {dk} is the vector of layer
thicknesses. We call this approach “classical” since it is
very widely used in many papers and software packages.

The merit function F (X) typically has numerous num-
bers of local minima; thus for its optimization, many spe-
cial approaches are proposed. One of the most efficient
approaches is the needle optimization technique (see Ref.
[3], Chapter 2), further developed in Refs. [8] and [9]
and implemented in the OptiLayer Thin Film software
package[10].

For the efficient implementation of the needle opti-
mization technique, it is necessary to obtain analytically
accurate equations and algorithms for the calculation of a
gradient of the merit function and the perturbation func-
tion used in the needle optimization procedure. Option-
ally, analytically accurate equations for the Hesse matrix
may be necessary for the use of the second-order opti-
mization methods. The derivation of the corresponding
equations was performed in the same way as described in
Eqs. (5)–(8). It is based on the corresponding recurrent
formulae for conjugated problems[3,11].

The GDD(m) values in Eq. (10) are often specified in
the following way. It is convenient to express the tar-
get GDD in terms of pulse GDD that needs to be com-
pensated. Usually, the pulse characteristics are given at
some wavelength λ0 = 2πc/ω0 positioned at the center of
its spectral distribution. Values of GDD(m) at different
wavelengths can be computed using several terms of the
Taylor series. For example,

GDD (ω) = GDD + TOD(ω − ω0)

+0.5FOD(ω − ω0)
2
. (11)

Consider an example of an application of the “classi-
cal” approach. In this example and all other examples
of the letter, we consider a Suprasil substrate and SiO2

and Nb2O5 as layer materials. All materials are non-
absorbing; refractive indices are given by Eq. (9), with
coefficients shown in Table 1 (wavelength should be ex-
pressed in microns).

The wavelength range will be from λmin = 550 nm to
λmax = 1100 nm, therefore, we consider a one-octave DM
design problem. We consider a wavelength grid consist-
ing of 1024 points distributed according to the equation:

λm = λminrj−1, r = exp
(

ln(λmax/λmin)
L − 1

)
,

j = 1, . . . , L. (12)

This distribution provides higher density of wavelength
points in a short wavelength region.

The target reflectances R(m) are 100%. The GDD(m)

values are given by Eq. (11) with parameters GDD =
−40 fs2, TOD = −10 fs3, and FOD = 0.0 fs4 at
λ0 = 790 nm. In this example and below, the angle
of incidence is 7◦ for the p-polarized light.

We use a 70-layer mirror with a central wavelength
of 790 nm and linearly decreasing thicknesses from 1.4
QWOT (quater-wave optical thickness) (substrate side)
to 0.6 QWOT (air side) as a starting design to accelerate

Table 1. Cauchy Formula Coeff icients for the
Substrate and Layer Materials

n∞ A B

Suprasil 1.4433 4.05996E-3 6.94818E-6

SiO2 1.4653 0.0 4.71080E-4

Nb2O5 2.2185 2.18268E-2 0.0040

Fig. 2. Layer thicknesses of a 70-layer DM obtained with the
“classical” approach.

Fig. 3. GDD (left axis) and reflectance (right axis) of a 70-
layer DM obtained with the “classical” approach. Crosses
designate the specified target values.



April 30, 2010 / Vol. 8, Supplement / CHINESE OPTICS LETTERS 15

computations. Here dimensionless QWOT units are re-
lated to the central wavelength of the mirror. One of the
possible multiple solutions to the problem is presented
in Fig. 2. This DM provides reflectance and GDD, as
shown in Fig. 3.

It is well known that for broadband high-reflection
DM designs, oscillations of GDD in this band are
inevitable[12−14]. A large level of GDD oscillations can
destroy the shape of output pulses, especially when oscil-
lations are not “regular”, that is, when the average level
of obtained GDD deviates significantly from target val-
ues, or shapes of adjacent oscillations are significantly
different. From this point of view, the solution obtained
with the “classical” approach Fig. 3 is not optimal, one
can expect a significant degradation of the output pulse
characteristics.

In order to improve the quality of solutions and extend
the set of design problems, a new method of phase opti-
mization with floating constants is proposed. Any given
dependence GDD(ω) can be integrated twice and this is
converted to the phase target:

ϕ̂(ω) =

ω∫
ω0

dω1

ω1∫
ω0

GDD(ω2) dω2 + C1ω + C2, (13)

where C1 and C2 are arbitrary integration constants. In-
stead of the merit function Eq. (10), it is natural to con-
sider another merit function with a phase term,

F (X, C1, C2) =
1
L

L∑
m=1

[(
R(λm) − R(m)

∆R(m)

)2

+
(

ϕ(λm) − ϕ(m)

∆ϕ(m)

)2
]

, (14)

where phase targets φ(m) = ϕ̂(ωm), and therefore include
constants C1 and C2.

Optimization of the merit function Eq. (14) was first
proposed in Ref. [12]; however, in this work, integration
constants were chosen by the trial-and-error method. A
much more advanced approach is based on an automated
exclusion of these constants from the merit function Eq.
(14). It is easy to see that F (X, C1, C2) depends on
the variables C1 and C2 quadratically, therefore, for any
vector of thicknesses X, there exists an unique combi-
nation of C∗

1 and C∗
2 , providing a minimum value of

F (X, C1, C2). The values C∗
1 and C∗

2 are determined
analytically as a solution of a system of linear equations
∂F (X, C1, C2)/∂C1 = 0, ∂F (X, C1, C2)/∂C2 = 0.
This allows us to exclude these constants from the
optimization problem and to reduce the optimization
problem to the form that allows us to apply the needle
optimization technique. Let us call this approach “opti-
mization with floating constants”.

Implementation of this approach requires taking into
account additional terms appearing in the expressions
for the gradient of the merit function Eq. (14) and per-
turbation function used in the needle optimization. Also,

Fig. 4. Layer thicknesses of a 68-layer DM obtained with
phase optimization approach.

Fig. 5. GDD (left axis) and reflectance (right axis) of a
68-layer DM obtained with phase optimization approach.
Red crosses designate specified target reflectances. Magenta
crosses designate GDD target values used in Eq. (13) to ob-
tain phase target.

it is necessary to take into account the problem of phase
unwrapping. The function ϕ = arg r (Eq. (3)) is multi-
valued. Correct implementation of the described method
requires computation of the same branch of this function
for any wavelength in the considered region.

Application of the phase optimization approach to the
problem considered in the previous part gives the solu-
tion shown in Fig. 4. Computations are significantly
faster in this case (the same starting design is used) be-
cause complicated GDD computations are not needed;
also, the merit function Eq. (14) is more convenient for
optimization methods because it has a simpler structure
of relief.

The obtained reflectance and GDD are shown in Fig.
5. In spite of the fact that only phases are present in
the merit function Eq. (14), the obtained GDD curve
oscillates very closely around the initial GDD target (ma-
genta crosses). The amplitude of oscillation grows when
wavelength increases; the oscillation pattern has a rather
“regular” character. We will see that a time-domain ap-
proach gives similar structures of DM designs.

A powerful method for suppression of the GDD oscil-
lation is based on using complimentary pairs of DMs.
In Ref. [15], a pair of 1.5-octave DMs was demonstrated
both theoretically and experimentally. Here, we limit
ourselves to the same one-octave design problem in order
to be able to compare various design approaches. We
define the reflectance and GDD of a DM pair using the
equation

Rp = (R1R2)
1/2

, GDDp = (GDD1 + GDD2)/2, (15)
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Fig. 6. GDD of a DM pair (black curve), GDD of the first
DM (blue curve), and GDD of the second DM (green curve).
Target GDD values are shown by magenta crosses.

Fig. 7. The resulting GDD of a DM pair (black curve) work-
ing at two incident angles, GDD of the first DM (blue curve)
working at 7◦, and GDD of the second DM (green curve)
working at 22◦. Target GDD values are shown by magenta
crosses.

and use these values in the merit function Eq. (10). In
the case of a DM pair vector of parameters, X consists
of both design thicknesses. Generalization of the needle
optimization technique for this case requires correspond-
ing modifications for gradient and perturbation function
computations. During the needle step, it is necessary to
consider both designs, consequently looking for the best
position for the insertion of a new layer.

In Fig. 6, the resulting GDDp of the designed pair (72
and 70 layer mirrors) is shown with black line; the level
of its oscillations is very low compared to a single mir-
ror. Suppression of oscillations was achieved due to the
fact that oscillations of the mirrors in the pair are in an-
tiphase. Manufacturing complementary mirror pairs is
a challenging task[15]. Special procedures should be ap-
plied in order to find a more robust solution. Mirrors in
the pair are produced in different deposition runs; in or-
der to achieve a high level of oscillation suppression both
runs should perfectly match.

It is possible to suppress GDD oscillations using mir-
rors deposited in a single run. The effect of suppression
is achieved when these mirrors work at different angles
of incidence[16], due to a shift of spectral characteristics
with changing incidence angle. From the mathematical
and implementation point of view, this problem is rather
close to the complimentary pair design. An important
difference for the double angle approach is the definition
of the parameter vector X, which now includes thick-

nesses of a single mirror.
Figure 7 demonstrates a good suppression of GDD os-

cillations with double angle approach, achieved in the
same one-octave DM design problem. Mirrors of the pair
are working at 7◦ and 22◦ angles of incidence; the mir-
ror consists of 80 layers. Of course, the suppression in
the double angle case is less than that in the case of the
complimentary pair, but all mirrors of a compressor are
deposited in the same deposition run and therefore auto-
matically match. Therefore, the double angle approach
allows us to design more practical DMs with better sta-
bility with respect to manufacturing errors.

An interesting and promising alternative to the DM
design in spectral domain considered above is the time-
domain design approach[17−19]. If an intensity spectrum
Iin(ω) and a phase ϕin(ω) of an input pulse are known,
one can compute the corresponding output pulse charac-
teristics. If the pulse exhibits n bounces inside a com-
pressor with the same mirrors, the output pulse Âout(ω)
can be represented as

Âout(ω) = [r(ω)]n Âin(ω),

Âin(ω) = Iin(ω) exp(iφin(ω)), (16)

where r(ω) is the amplitude reflectance of the mirror.
The temporal shape of the output pulse is obtained with
the help of Fourier transform; for numerical implementa-
tion fast Fourier transform algorithms should be used[20].
The main idea of the time-domain approach comprises
the optimization of a special merit function describing
concentration of pulse energy at some temporal point
t0 and also includes the requirement for pulse energy
maximization[17]:

Φ = (Ep)
−q

+∞∫
−∞

(t − t0)2 |Aout(t)|p dt,

t0 = (Ep)
−1

+∞∫
−∞

t |Aout(t)|pdt,

Ep =

+∞∫
−∞

|Aout(t)|pdt, q ≥ 1. (17)

Fig. 8. GDD (left axis) and reflectance (right axis) of a 68-
layer DM obtained with the time-domain approach. Red
crosses designate specified target reflectances. Magenta
crosses designate GDD of the input pulse with the opposite
sign.
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Fig. 9. Bandwidth limited input pulse envelope (red curve),
the envelope of the output pulse after one reflection (green
curve), and the envelope of the output pulse (blue curve) af-
ter 10 bounces for the 68-layer DM obtained by time-domain
needle optimization.

The introduction of two parameters p and q gives a high
level of flexibility.

Numerical tests and some additional considerations[17]
allow us to select p = 4 and q = 3, giving the best design
results.

To illustrate the time-domain optimization approach
we considered a similar design problem of the compres-
sion of a pulse with super-Gaussian spectrum inten-
sity centered at 790 nm and half-width of 500 THz;
the GDD of this pulse was specified by Eq. (11), with
GDD = 40 fs2, TOD = 10 fs3, and FOD = 0.0 fs4.
A special version of the needle optimization technique
based on the optimization of the merit function Eq. (17)
allows us to obtain a 68-layer DM with reflectance and
GDD, as shown in Fig. 8. It is interesting to note that
the GDD spectral dependence looks quite similar to the
GDD spectral dependence obtained with the phase opti-
mization approach (see Fig. 5).

The time-domain approach allows us to investigate the
shapes of the envelope of output pulses (Fig. 9). Even
after 10 bounces, the intensity of the output pulse is
still higher than 80% of the input pulse. Additional in-
formation on comparison of mirrors obtained with the
time-domain approach and “classical” approach can be
found in Ref. [19]. The time-domain approach is es-
pecially efficient and useful when reliable information
concerning the characteristics of pulses to be compressed
is known.

In conclusion, several DM design approaches having
high efficiency and different areas of application were
described and demonstrated. All approaches were imple-
mented either directly using the OptiLayer Thin Film
software[10] or as special plug-in extension modules.
Some approaches can be combined; for example, the

time-domain optimization of complimentary DM pairs
is available. Having several highly efficient DM design
approaches allows a researcher to select the approach
best suited to his requirements and to solve the most
challenging design problems.
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